Probabilistic Solution of the Dirichlet Problem for Biharmonic Functions in Discrete Space'

نویسنده

  • R. J. VANDERBEI
چکیده

Considering difference equations in discrete space instead of differential equations in Euclidean space, we investigate a probabilistic formula for the solution of the Dirichlet problem for biharmonic functions. This formula involves the expectation of a weighted sum of the pay-offs at the successive times at which the Markov chain is in the complement of the domain. To make the infinite sum converge, we use Borel's summability method, This is interpreted probabilist.ically by imbedding the Markov chain into a continuous time. discrete space Markov process,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions

In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...

متن کامل

Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...

متن کامل

Convergence Analysis of a Quadrature Finite Element Galerkin Scheme for a Biharmonic Problem

A quadrature finite element Galerkin scheme for a Dirichlet boundary value problem for the biharmonic equation is analyzed for a solution existence, uniqueness, and convergence. Conforming finite element space of Bogner-Fox-Schmit rectangles and an integration rule based on the two-point Gaussian quadrature are used to formulate the discrete problem. An H2-norm error estimate is obtained for th...

متن کامل

GENERAL SOLUTION OF ELASTICITY PROBLEMS IN TWO DIMENSIONAL POLAR COORDINATES USING MELLIN TRANSFORM

Abstract In this work, the Mellin transform method was used to obtain solutions for the stress field components in two dimensional (2D) elasticity problems in terms of plane polar coordinates. the Mellin transformation was applied to the biharmonic stress compatibility equation expressed in terms of the Airy stress potential function, and the boundary value problem transformed to an algebraic  ...

متن کامل

An efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions

In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006